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Abstract. Graph partitioning is a well-known optimization problem of
great interest in theoretical and applied studies. Since the 1990s, many
multilevel schemes have been introduced as a practical tool to solve this
problem. A multilevel algorithm may be viewed as a process of graph
topology learning at different scales in order to generate a better approx-
imation for any approximation method incorporated at the uncoarsening
stage in the framework. In this work we compare two multilevel frame-
works based on the geometric and the algebraic multigrid schemes for
the partitioning problem.

1 Introduction

Graph partitioning is a computing technique used in many fields of computer
science and engineering. Applications include VLSI design, minimizing the cost
of data distribution in parallel computing, optimal tasks scheduling, etc. The
goal is to partition the vertices of a graph into a certain number of disjoint sets
of approximately the same size, so that a cut metric is minimized. Because of the
NP-hardness [16] of the problem and its practical importance, many heuristics of
different nature (spectral [26], combinatorial [23,15], evolutionist [7], etc.) have
been developed to provide an approximate result in a reasonable (and, one hopes,
linear) computational time. However, only the introduction of the multilevel
methods during the 1990s has really provided a breakthrough in efficiency and
quality.

During the past two decades many attempts have been made to use multi-
level strategies for solving combinatorial optimization problems [6,32]. The most
frequent branches on which the multilevel algorithms have been applied are VLSI
design [9,10,13], graph optimization problems [29] (with special attention to the
partitioning problem [1,2,3,27,4,19,22]), and several others [8,14,31].

The main objective of a multilevel based algorithm is to create a hierarchy
of problems (coarsening), each representing the original problem, but with fewer
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degrees of freedom. For the partitioning and other graph modeled problems, this
hierarchy may be viewed as a process of learning of a graph topology prior to
applying any approximation method. The construction of hierarchies at differ-
ent scales ends up at the level with a very small number of degrees of freedom
(coarsest level) that allows to get a first approximation to the original problem at
very large scale within an insignificant running time (even for exact algorithm)
in comparison to the size of original problem. Then, the obtained approxima-
tion is sequentially projected along all levels of the hierarchy (interpolation or
projection) until it reaches the original problem with some approximation for it.
The projection stage can be reinforced at each level by some refinement algo-
rithm that improves the quality of approximation before further projection. The
projection reinforced by a refinement method is called uncoarsening. In terms
of graph partitioning problem, the hierarchy of coarse graphs is constructed for
different scales, and at each scale the approximation algorithm for this problem
is applied in order to project and improve current approximations. In Figure
1, we present a small example of a multilevel framework (called V -cycle) for
the 4-partitioning problem. For needed references and background on multilevel
techniques, we refer the reader to [6].

initial partitioning
Fig. 1. Example of multilevel framework for a 4-partitioning problem. Three
empty ellipses represent the three levels of the coarsening. The smallest col-
ored by four colors ellipse corresponds to the coarsest level graph. Four colors
of the graphs through the uncoarsening stage correspond to the 4-partitioning
approximation.

Almost all previously developed multilevel schemes for simple graphs possess
exactly the same strict coarsening. It is carried out by matching groups (usually
pairs) of vertices together and representing each group with a single vertex in
the coarsened space (e.g., matching [19,22], first choice [13]). Another class of
multilevel schemes used for several combinatorial optimization problems is based
on an algebraic multigrid (AMG) method [21,24,27,29]. The principal difference
between these two approaches is explained in graph model terms in [29]. Be-
cause of the difficulties in performing a rigorous analysis of multilevel schemes
for discrete problems, the empirical judgment of all these algorithms is usually
based on the best achieved results on some test set. Multilevel algorithms con-
sist of many algorithmic parts, and it is not easy to realize which part plays the
crucial role. This paper is about the role of a coarsening scheme in a multilevel
framework.



The main goal of this paper is a systematic comparison of the AMG-based
scheme versus strict scheme based on heavy edge matching (HEM, adopted since
1995 and implemented in many multilevel packages) for the partitioning problem
while having the uncoarsening parts (based on the popular sequential algorithm
called Fiduccia-Mattheyses (FM) [15]) exactly the same in both cases. This issue
still has not been studied empirically, in contrast to many other works in which a
number of a more or less successful uncoarsening and postprocessing procedures
have been suggested. The framework used for these experiments is Scotch [25],
since it provides an open architecture to easily plug in different algorithms and
choose between them at the runtime with the strategy string, a powerful way
to dynamically choose the methods and the parameters we want to use. The
AMG-based coarsening procedure was taken from [29].

2 Definitions and notation

Consider a simple weighted graph G = (V,E), where V = [1, n] is the set of
vertices (nodes) and E is the set of edges. Denote by wij the non-negative weight
of the undirected edge ij ∈ E; if ij 6∈ E, then wij = 0. Let vi be a positive weight
of vertex i ∈ V and v(A) =

∑
i∈A vi, where A ⊆ V .

The goal of the general graph k-partitioning problem is to find a partition of
V into a family of k disjoint nonempty subsets (πp)1≤p≤k, while enforcing the
following:

1)
∑

i∈πp⇒j 6∈πp

wij is minimized (called interface size or edgecut) and

2) max
p∈[1,k]

∣∣∣∣v(πp)−
v(V )
k

∣∣∣∣ is minimized (called balanced objective).

It is accepted to call one subset πp as a part and a family (πp)1≤p≤k as a
partition of V . In general, two minimization objectives can often be in conflict.
Thus, in most of the partitioning formulations the balance objective is restrained
to be a constraint

∀p ∈ [1, k], v(πp) ≤ (1 + α) · v(V )
k

,

where α is a given imbalance factor. In this paper, we refer to the constrained
version of the problem as the graph k-partitioning problem.

A common method of solving the k-partitioning problem when k > 2 is
to adopt a divide and conquer approach [30] that uses recursive bisection (or
bipartitioning). To simplify the explanation, without loss of generality, we will
talk about bipartitioning rather than k-partitioning.

3 Coarsening schemes

In general, any coarsening can be interpreted as a process of aggregation of graph
nodes to define the nodes of the next coarser graph. In this paper we compare



two coarsening schemes: strict and weighted aggregations (SAG and WAG). For
completeness we briefly review their description.

In SAG (also called edge contraction or matching of vertices) the nodes are
blocked in small disjoint subsets, called aggregates. Two nodes i and j are usually
blocked together if their coupling is locally strong, meaning that wij is compa-
rable to min{maxk wik,maxk wkj} (see Figure 2). In WAG, each node can be
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Fig. 2. Schematic demonstration of the SAG scheme. The dashed ovals corre-
spond to the pairs of vertices at the fine level that form aggregates at the coarse
level. For example, vertices ”1” and ”3” are aggregated into one coarse node
”1,3”.

divided into fractions. Different fractions belong to different aggregates (see Fig-
ure 3); that is, V will be covered by (presumably) small intersecting subsets of
V . The nodes that belongs to more than one subset will be divided among corre-
sponding coarse aggregates. In both cases, these aggregates will form the nodes
of the coarser level, where they will be blocked into larger aggregates, forming
the nodes of a still coarser level, and so on.
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Fig. 3. Schematic demonstration of the WAG scheme. The closed curves at the
left graph correspond to the subsets of vertices that form aggregates at the coarse
level. These subsets are not disjoint; in other words, vertices in intersection are
divided among several aggregates.

As AMG solvers have shown, weighted, instead of strict, aggregation is im-
portant in order to express the likelihood of nodes to belong together; these
likelihoods will then accumulate at the coarser levels of the process, indicating
tendencies of larger-scale aggregates to be associated to each other. SAG, in
contrast, may run into a conflict between the local blocking decision and the
larger-scale picture.



For both aggregation schemes, the construction of a coarse graph is divided
into three stages: (a) a subset of the fine nodes is chosen to serve as the seeds
of the aggregates (which form the nodes of the coarser level), (b) the rules
for interpolation are determined, and (c) the weights of the edges between the
aggregates are calculated. For simplicity, we will unify stages (a) and (b) into
one stage in case of SAG. Here are the basic steps of these aggregation schemes.

SAG: coarse nodes. Visit the vertices according to some order [22] and
choose an appropriate (heaviest, lightest, random, etc., see [22]) edge for mak-
ing a coarse aggregate from its two endpoints i and j. The weight of a coarse
aggregate will be vi + vj .

WAG: coarse nodes-(a). The construction of the set of seeds C ⊂ V and
its complement F = V \ C is guided by the principle that each F -node should
be “strongly coupled” to C. Starting from C = ∅ and F = V , transfer nodes
from F to C until all remaining i ∈ F satisfy∑

j∈C
wij/

∑
j∈V

wij ≥ Θ ,

where Θ is a parameter (usually Θ ≈ 0.5).
WAG: coarse nodes-(b). Define for each i ∈ F a coarse neighborhood Ni

consisting of C-nodes to which i is connected. Let I(j) be the ordinal number in
the coarse graph of the node that represents the aggregate around a seed whose
ordinal number at the fine level is j. The classical AMG interpolation matrix P
is defined by

PiI(j) =


wij/

∑
k∈Ni

wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise .

PiI(j) thus represents the likelihood of i to belong to the I(j)th aggregate. The
volume of the pth coarse aggregate is

∑
j vjPjp. Note that |Ni| is controlled by

the parameter called interpolation order.
SAG: coarse edges. Introduce a weighted coarse edge between aggregates

p and q created from fine pairs of vertices (i1, i2) and (j1, j2), respectively. Then
wpq will accumulate all possible connections between different components of
these pairs.

WAG: coarse edges. Assign the edge connecting two coarse aggregates p
and q with the weight wpq =

∑
k 6=l PkpwklPlq.

In general, both processes might be reformulated as a single algorithm. Note
that, given two consecutive levels l and L, in both cases∑

i∈Gl

vi =
∑
i∈GL

vi.

In contrast to the widely used SAG scheme, we are aware of two partitioning
solvers [24] and [27] in which an AMG-based scheme was employed. In contrast
to [24] we employed the AMG-based coarsening only once directly on the original
graph. In [24] two coarsening schemes were employed: PMIS and CLJP. Some



parts of these schemes were adapted for their purposes. This solver is very suc-
cessful, however, in that work was discussed a newly introduced refinement only.
The process of coarsening in [27] is reinforced by compatible Gauss-Seidel relax-
ation [5], which improves the quality of the set of coarse-level variables, prior to
deriving the coarse-level equations. The quality measure of the set of coarse-level
variables is the convergence rate of F -nodes with respect to C. However, work
on improving the quality of coarse-level variables and equations is in progress,
and currently it is not clear wheather this relaxation plays an important role for
the partitioning problem.

4 Uncoarsening

In this section we will provide the details about the uncoarsening stage and
several recommendations of relatively easy improvement of it.

4.1 Disaggregation

To compare the different coarsening methods described in the preceding section,
we have chosen to use the same refinement techniques for all the schemes and
not to develop one specifically designed for WAG.

The uncoarsening phase typically consists of two steps: the projection of the
partition from the coarser graph to the finer graph and the refinement, a local
optimization of the partition using the available topological information at the
current level.

The projection phase is simple in the case of a strict coarsening scheme. It
consists only of assigning the same part number for a fine vertex as the one
assigned to its associated coarse vertex.

For a nonstrict coarsening scheme, the projection phase is more complex. We
can directly project only the seeds exactly as with a strict coarsening; but for
fine vertices that are not seeds, we have to do an interpolation to compute their
assignments with respect to the assignments of their neighbors.

In this paper, we have focused on two simple interpolation methods. Both
require computing the probability that a fine vertex belongs to a specific part.
In the case of bipartitioning, only the knowledge of the probability to be in the
part 0 (or 1) matters. Let us call P0(i) the probability that vertex i is in part 0,
i.e.,

P0(i) =
∑

k∈Ni,I(k)∈π0

PiI(k) .

The first strategy assigns a vertex i to the part 0 (1) if the probability P0(i)
is greater (lower) than 1

2 . The second strategy assigns the part number propor-
tionally to the probability P0.

In these two schemes, the projection and interpolation involve two consecu-
tive loops. The first loop browses all the seeds and set their assignments to be
those of their corresponding coarse vertices. The second loop scans all the fine



nonseed vertices and fixes them in their parts by computing P0. The cost in time
is thus Θ(|C|+ |F | · io), where io is the interpolation order, instead of Θ(|F |) for
SAG.

The next phase consists of the optimization of current assignment using a
relaxation (or refinement) methods. In our experiments, we use one of the most
popular refinement techniques, Fiduccia-Mattheyses (FM) [15]. This algorithm
is popular because it is fast and allows randomized optimization for the cost
function. Its principle is simple: Order the vertices according to the gain in
edgecut obtained if the vertex is moved to another part; then move the vertex
of highest gain, and update the gain for the neighbors; then loop. It is possible
that the gain can signify a decrease in the partition quality, but one hopes it
can lead to a better local minimum for the edgecut. The number of degradation
moves is a parameter and by default set in Scotch to 80.

However, we have also chosen to try a poorer refinement, for two reasons.
First, to really compare the coarsening schemes, we have to avoid a too pow-
erful refinement because it can hide some artifacts caused by the coarsening.
The second reason is that a hill-climbing refinement is sometimes not available,
especially in parallel algorithms. To do this poorer refinement, we continue to
use FM but with a limitation during its execution: we force FM to stop if the
best move will degrade the partition quality. Thus, we obtain only a gradient-like
refinement.

4.2 Further improvements

As mentioned, this paper compares of two coarsening schemes given a signif-
icantly simplified, common uncoarsening stage that can be easily parallelized.
However, we would like to include in this paper a list of possible further im-
provements of the AMG-based algorithm. These improvements were tested on
the partitioning and linear ordering problems, and all have a good chance of
exhibiting superior results to a basic algorithm.

Prolongation by layers. In classical AMG schemes the initialization of fine
level variables is done by a prolongation operator that is equal to the transpose
of the restriction operator. In several multilevel algorithms the initialization
process depends on the already-initialized variables [29,27], while the order of
the initialization is determined by the strength of connection between variables
and the set of already initialized variables.

Compatible relaxation. This type of strict minimization was introduced
in [5] as a practical tool for improving the quality of selecting the coarse variables
and consequently the relations between the fine and coarse variables. In general,
this relaxation minimizes the local energy contribution of fine variables while
keeping coarse variables invariant (see [29,27]).

Generating many coarse solutions. Solving the problem exactly at the
coarsest level may be reinforced by producing many solutions that differ from
each other and involve a lowcost partitioning simultaneously.

Cycling and linearization. One complete iteration of the algorithm is
called a V -cycle, because of the order of visiting the coarse levels. Other pat-



terns of visiting the coarse levels are also possible. A Wν-cycle was tested in
the multilevel scheme for the linear ordering problems [29] and exhibited an im-
provement proportionally to the amount of work units it spent in comparison
to the V -cycle. For both V - and Wν-cycles the linearization technique [28] was
used to provide a current approximated solution as an initial point for further
approximation.

5 Computational results

To prevent possible unexpected problems of implementation and to make a fair
comparison of the two methods, we implemented full WAG multilevel algorithm
with two separate software packages: [29] for the coarsening stage and Scotch
for the uncoarsening. The entire strict aggregation (HEM) multilevel partition-
ing algorithm was taken from the Scotch package. The combination of two
separate packages limited us in performing the bisection experiments only, since
the general k-way partitioning might be produced by Scotch by applying a bi-
section method recursively. However, this limitation does not play a crucial role
in understanding the general process. Usually, the quality of the k-way partition-
ing strongly depends on the quality of the bisectioning algorithm incorporated
into the general scheme, as a small bias on the first dissection has consequence
on all the next levels of bisection.

As is done in most multilevel graph partitioning implementations, the coars-
ening is continued until the size of the coarsest graph is more than 100 vertices.
Then, an aggressive heuristic is applied to get an initial partitioning. The exact
partitioning of the coarse graph does not influence the final quality if it is not
used in the context of a multiprojection of different partitions.

The comparison is based on the set of real-world graphs presented in Ta-
ble 1. The imbalance ratio was kept at 1% during all experiments. In order to
estimate the algorithmic stability, each test was executed twenty times with dif-
ferent random seeds and initial reshuffling of V and E. Experiments with 100
executions per test did not provide a better estimation of a general statistical
view (minimum, maximum, average, and standard deviation).

5.1 Discussion

A frequent weakness of the classical matching-based coarsening schemes may
be formulated as the following observation: the results are quite unpredictable.
This can be characterized by high standard deviation of the edgecuts, undesirable
sensitivity to the parameters, random seed dependence, and other factors that
can influence the robustness of the heuristic. In terms of the coarsening stage,
this weakness can be heuristically explained by conflicts between local decisions
(at the fine scale) and the global solution. In other words, by matching two
vertices we assume that, according to some argument, they will share a common
property (belonging to the same πp) and this property will be assigned to each of
them at the interpolation stage as initial solution. Unfortunately, because of the



Graph name |V |(×103) |E|(×103) Avg. degree Type

4elt 15 46 5.88 2D finite element mesh
altr4 26 163 12.5 Mesh, CEA-CESTA

oilpan 74 1762 47.78 3D stiffness matrix
ship001 35 2304 132 Parasol matrix

tooth 78 452 11.5 3D finite element mesh
m14b 215 1679 15.6 3D finite element mesh
ocean 143 410 5.71 3D finite element mesh

fe rotor 100 662 13.3 3D finite element mesh
598a 111 742 13.37 3D finite element mesh

144 144 1074 15 3D finite element mesh
Peku01-25 13 112 17.86 Placement graph

bcsstk32 45 985 44.16 3D stiffness matrix
thread 30 2220 149.32 Parasol matrix

plgr 2500 2 2.5 24 19.61 Power-law graph
plgr 5000 1 4 6.2 3.03 Power-law graph
plgr 5000 2 3.8 5.2 2.72 Power-law graph
plgr 5000 3 4.1 6.2 3.03 Power-law graph

fxm4 6 19 239 25.3 Optimization problem
p2p 1 11 31 5.72 p2p network
p2p 2 11 31 5.62 p2p network

Table 1. Some of the graphs on which we ran our experiments.

NP-hardness of the partitioning problem (still) no argument can provide enough
pairwise local (even with high probability) decisions for the vertices to belong to
the same part. Thus, making a local decision without collecting enough global
information regarding the graph can lead to the unexpectedness.

In contrast to SAG, WAG consists of two ways to prevent itself from making
local decisions before collecting the global information: (a) each vertex must be
connected to enough seeds and (b) the nonseed vertex might be divided between
several seeds (when io > 1). Thus, the obtained covering of a fine graph by ag-
gregates (like those depicted in Figure 3) is smoother and the connectivity of a
coarse aggregate is better than a pair matching can ensure. However, by increas-
ing the number of possible F-vertices divisions, the connectivity of an aggregate
may be too high and can cause an increased coefficient in linear running time.
Thus, it must be controlled by the interpolation order. Moreover, it was never
observed that too high an interpolation order (more than twenty) has improved
the final results significantly. It can lead to the global averaging process which
result can be far from an optimality.

In Figure 4 we compare HEM and WAG with io = 4 (which still has a
low complexity and exhibits superior results); no randomized optimization was
applied at the refinement in either case. Except int two peer-to-peer graphs,
WAG clearly outperforms HEM, producing two times better average cuts.

This significant improvement is explained by a better conservation of a graph
topology during the WAG coarsening. The main reason is that one can expect
a good AMG coarsening of the graph Laplacian when the problem is associated
with, or approximated by, the problem of minimizing the quadratic functional



given by
∑
i,j wij(xi − xj)2, which is, in general, a natural problem that can be

solved better by AMG than by geometric multigrid approaches [6]. The parti-
tioning problem yields such an approximation while, for example, considering
spectral methods [26] or quadratic programming [18].

In particular, this improvement is interesting in light of designing parallel
graph partitioners, since many efforts are needed to obtain an efficient parallel
refinement. Another important observation is that the WAG standard deviation
is lower; that is, the quality of the partitions is more predictable. It can certainly
reduce the number of executions of the algorithm as it works in several tools and
by default in Scotch.
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Fig. 4. Edgecut between HEM and WAG with interpolation order 4 when using
a gradient refinement. The HEM average is 1. The area colored by dark-gray
represents the standard deviation, counted positively and negatively. The light-
gray bars are the WAG average, and the dark-gray boxes the standard deviation.

The second experiment consists of applying the same WAG and HEM rein-
forced by FM with hill-climbing capabilities. The results are presented in Figure
5. For all test graphs in this case, WAG remains superior to HEM while having
a lower standard deviation. More aggressive uncoarsening allows us to better
exploit a graph topology and leads to the better partitions. Note that WAG
clearly outperforms HEM on power-law graphs. However, in the current (not
fully optimized) WAG version poorest refinement can give better results.

Another experiment was performed to determine the influence of the inter-
polation order in WAG. In the previous tests, only HEM was matching-based;
that is, the size of one aggregate was limited by two. However, a study on graph
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Fig. 5. Edgecut between HEM and WAG with interpolation order 4 when using
a FM refinement with hill climbing. The symbols are the same as in Figure 4.

partitioning of power-law graphs [1] shows that the size of the aggregate could
be important. In Figure 6, WAG with interpolation order of 1 corresponds to a
generic SAG, and we can observe that increasing the interpolation order usually
leads to better results.

A method of increased interpolation orders (marked here by ”inc io”) was
proposed in [28]. According to this method the interpolation order must be
increased as the coarse graphs become smaller. This hardly affects the total
complexity of the algorithm, but it does systematically improve the obtained
results since it helps to learn better a graph topology before the uncoarsening
stage.

Average edgecuts for partitions computed by standard HEM and by WAG
are summarized in Table 3. On our set of test graphs, WAG is on average 15%
better than HEM, and worse only for the graph p2p 1. However, we explain
this particular problem as a lack of compatible relaxation, which has to be a
natural part of any AMG-based algorithm. Usually increasing the interpolation
order gives better results, but it seems to be a problem in some cases when too-
simplified projection and refinement are applied, since they are not designed to
deal efficiently with the gain of precision of a high interpolation order.

Although the goal of this work was not to obtain the best known results,
we present a comparison against the best known results obtained at Walshaw’s
database (The graph partitioning archive. http://staffweb.cms.gre.ac.uk/

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
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is about 2.61 . The symbols are the same as in Figure 4.

~c.walshaw/partition/) in Table 2. Observe that the best WAG result is on
average less than 0.6% from the best known partitioning. We can note that the
best WAG partition is always better than the best of HEM, on average by 3%
on meshes and 15% on all of our test cases. Another interesting point is that all
the best results are obtained with normal FM refinement, except those for the
power-law graphs. Thus, at least for this class of graphs, the improvements of
uncoarsening (suggested in Section 4.2) may be interesting.

6 Conclusions

This paper compares two coarsening schemes in the context of graph partition-
ing. As a main result of this work, we recommend the adoption of WAG instead
of classical HEM because of its higher ability of graph topology learning prior to
the uncoarsening stage. In general, WAG improves the quality of the partitions
and thus provides a better chance of finding a good approximation.

In particular, the robustness of WAG was better than that of SAG coarsen-
ing when a poor refinement was employed and WAG provided still good-quality
results. Since parallel implementations in algebraic multigrid solvers [20,17] are
very scalable and since the refinement is often poor in parallel, WAG appears to
be an ideal candidate to design highly scalable efficient parallel graph partition-
ing tools.

The framework we use allowed us to combine different coarsenings with differ-
ent uncoarsenings. For example, we have done several experiments with a band-
FM refinement [11], which, despite the simplicity of our projection, worked well

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/


Graph Best
HEM

WAG Delta (%)
name known io=1 io=2 io=4 io=6 io=10 io=20 inc io best HEM

4elt 138 140 138 138 138 138 138 138 138 0.00 -1.43
tooth 3823 4029 4100 3971 3921 3949 3947 3894 3987 1.86 -3.35
m14b 3826 3915 3888 3882 3860 3877 3858 3871 3863 0.84 -1.46
ocean 387 406 388 387 387 387 387 387 387 0.00 -4.68

fe rotor 2045 2104 2085 2072 2041 2039 2053 2056 2070 -0.29 -3.09
598a 2388 2451 2428 2429 2414 2418 2402 2398 2415 0.42 -2.16

144 6479 6688 6638 6622 6596 6576 6556 6575 6600 1.19 -1.97
bcsstk32 4667 5009 4740 4788 4776 4757 4938 5013 4743 1.56 -5.37

Table 2. Minimum edgecut obtained on 20 runs. HEM is the standard Scotch
matching and the Best known results are from Chris Walshaw’s database. All
the HEM results and all the WAG results are obtained by using FM refinement
with at most 80 unproductive moves for hill climbing.

Graph
HEM

WAG Delta (%)
name io=1 io=2 io=4 io=6 io=10 io=20 inc io HEM

4elt 170 152 154 141 142 140 142 142 -14.70
altr4 1656 1638 1619 1607 1593 1587 1593 1619 -2.88

oilpan 9433 9533 9153 8923 8974 8744 8771 8854 -4.66
ship001 17052 16787 16754 16733 16720 16616 16562 16770 -2.03

tooth 4346 4418 4289 4211 4152 4129 4114 4133 -3.21
m14b 4029 4043 3968 3920 3920 3913 3907 3914 -2.20
ocean 427 420 417 395 393 392 391 395 -6.33

fe rotor 2205 2147 2129 2115 2112 2160 2107 2123 -3.51
598a 2484 2478 2458 2444 2438 2424 2416 2440 -1.67

144 6826 6909 6763 6671 6637 6632 6621 6672 -1.83
Peku01-25 8305 7008 7049 6802 6798 6742 6711 6819 -17.55

bcsstk32 5588 5576 5425 5286 5067 5154 5176 5066 -6.06
thread 55933 55966 55899 55917 55970 55898 55943 55990 0.01

plgr 2500 2 6908 2308 1605 1920 2117 2588 3294 2018 -67.22
plgr 5000 1 946 771 775 757 751 752 740 762 -19.84
plgr 5000 2 627 491 496 483 478 466 466 482 -23.41
plgr 5000 3 939 772 774 754 751 747 747 753 -19.37

fxm4 6 1639 511 478 471 471 484 518 471 -70.33
p2p 1 1951 1944 1985 1936 2326 2447 2221 2254 10.65
p2p 2 3762 1981 2123 2423 2451 2261 2663 2240 -38.71

Table 3. Average edgecut over 20 run with hill-climbing FM for HEM and WAG
with various interpolation orders. Delta is the difference between HEM and the
average of WAG, in percent. The numbers in bold correspond to the best average
edgecut for a graph.



with similar results. WAG allows one to obtain superior results with several dif-
ferent tested methods that are of great interest for parallel implementation [12].

The partitionings obtained during our experiments certainly may be im-
proved by using more sophisticated projection and relaxation methods at the
refinement, as mentioned in 4.2.
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